Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 388
Filtrar
1.
Nat Commun ; 13(1): 672, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115506

RESUMO

Microbial biocontainment is an essential goal for engineering safe, next-generation living therapeutics. However, the genetic stability of biocontainment circuits, including kill switches, is a challenge that must be addressed. Kill switches are among the most difficult circuits to maintain due to the strong selection pressure they impart, leading to high potential for evolution of escape mutant populations. Here we engineer two CRISPR-based kill switches in the probiotic Escherichia coli Nissle 1917, a single-input chemical-responsive switch and a 2-input chemical- and temperature-responsive switch. We employ parallel strategies to address kill switch stability, including functional redundancy within the circuit, modulation of the SOS response, antibiotic-independent plasmid maintenance, and provision of intra-niche competition by a closely related strain. We demonstrate that strains harboring either kill switch can be selectively and efficiently killed inside the murine gut, while strains harboring the 2-input switch are additionally killed upon excretion. Leveraging redundant strategies, we demonstrate robust biocontainment of our kill switch strains and provide a template for future kill switch development.


Assuntos
Sistemas CRISPR-Cas/genética , Escherichia coli/genética , Engenharia Genética/métodos , Probióticos/metabolismo , Animais , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Escherichia coli/fisiologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Probióticos/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Estreptomicina/farmacologia , Temperatura , Tetraciclinas/farmacologia
2.
Nature ; 603(7900): 315-320, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35197633

RESUMO

Colibactin is a chemically unstable small-molecule genotoxin that is produced by several different bacteria, including members of the human gut microbiome1,2. Although the biological activity of colibactin has been extensively investigated in mammalian systems3, little is known about its effects on other microorganisms. Here we show that colibactin targets bacteria that contain prophages, and induces lytic development through the bacterial SOS response. DNA, added exogenously, protects bacteria from colibactin, as does expressing a colibactin resistance protein (ClbS) in non-colibactin-producing cells. The prophage-inducing effects that we observe apply broadly across different phage-bacteria systems and in complex communities. Finally, we identify bacteria that have colibactin resistance genes but lack colibactin biosynthetic genes. Many of these bacteria are infected with predicted prophages, and we show that the expression of their ClbS homologues provides immunity from colibactin-triggered induction. Our study reveals a mechanism by which colibactin production could affect microbiomes and highlights a role for microbial natural products in influencing population-level events such as phage outbreaks.


Assuntos
Bactérias , Toxinas Bacterianas , Peptídeos , Policetídeos , Prófagos , Ativação Viral , Bactérias/efeitos dos fármacos , Bactérias/virologia , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/farmacologia , Bacteriólise/efeitos dos fármacos , Interações Microbianas/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/farmacologia , Policetídeos/metabolismo , Policetídeos/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/fisiologia , Resposta SOS em Genética/efeitos dos fármacos , Ativação Viral/efeitos dos fármacos
3.
Elife ; 112022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-35037621

RESUMO

The plasmid-mediated quinolone resistance (PMQR) genes have been shown to promote high-level bacterial resistance to fluoroquinolone antibiotics, potentially leading to clinical treatment failures. In Escherichia coli, sub-minimum inhibitory concentrations (sub-MICs) of the widely used fluoroquinolones are known to induce the SOS response. Interestingly, the expression of several PMQR qnr genes is controlled by the SOS master regulator, LexA. During the characterization of a small qnrD-plasmid carried in E. coli, we observed that the aminoglycosides become able to induce the SOS response in this species, thus leading to the elevated transcription of qnrD. Our findings show that the induction of the SOS response is due to nitric oxide (NO) accumulation in the presence of sub-MIC of aminoglycosides. We demonstrated that the NO accumulation is driven by two plasmid genes, ORF3 and ORF4, whose products act at two levels. ORF3 encodes a putative flavin adenine dinucleotide (FAD)-binding oxidoreductase which helps NO synthesis, while ORF4 codes for a putative fumarate and nitrate reductase (FNR)-type transcription factor, related to an O2-responsive regulator of hmp expression, able to repress the Hmp-mediated NO detoxification pathway of E. coli. Thus, this discovery, that other major classes of antibiotics may induce the SOS response could have worthwhile implications for antibiotic stewardship efforts in preventing the emergence of resistance.


Assuntos
Aminoglicosídeos/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli , Plasmídeos/genética , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/fisiologia , Óxido Nítrico/metabolismo , Quinolonas
4.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831448

RESUMO

Antibiotics are well known drugs which, when present above certain concentrations, are able to inhibit the growth of certain bacteria. However, a growing body of evidence shows that even when present at lower doses (subMIC, for sub-minimal inhibitory concentration), unable to inhibit or affect microbial growth, antibiotics work as signaling molecules, affect gene expression and trigger important bacterial stress responses. However, how subMIC antibiotic signaling interplays with other well-known signaling networks in bacteria (and the consequences of such interplay) is not well understood. In this work, through transcriptomic and genetic approaches, we have explored how quorum-sensing (QS) proficiency of V. cholerae affects this pathogen's response to subMIC doses of the aminoglycoside tobramycin (TOB). We show that the transcriptomic signature of V. cholerae in response to subMIC TOB depends highly on the presence of QS master regulator HapR. In parallel, we show that subMIC doses of TOB are able to negatively interfere with the AI-2/LuxS QS network of V. cholerae, which seems critical for survival to aminoglycoside treatment and TOB-mediated induction of SOS response in this species. This interplay between QS and aminoglycosides suggests that targeting QS signaling may be a strategy to enhance aminoglycoside efficacy in V. cholerae.


Assuntos
Aminoglicosídeos/farmacologia , Viabilidade Microbiana , Percepção de Quorum/efeitos dos fármacos , Vibrio cholerae/fisiologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Percepção de Quorum/genética , Resposta SOS em Genética/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Tobramicina/farmacologia , Transcriptoma/genética , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/genética , Vibrio cholerae/crescimento & desenvolvimento
5.
Toxins (Basel) ; 13(7)2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201801

RESUMO

Several classes of non-antibiotic drugs, including psychoactive drugs, proton-pump inhibitors (PPIs), non-steroidal anti-inflammatory drugs (NSAIDs), and others, appear to have strong antimicrobial properties. We considered whether psychoactive drugs induce the SOS response in E. coli bacteria and, consequently, induce Shiga toxins in Shiga-toxigenic E. coli (STEC). We measured the induction of an SOS response using a recA-lacZ E. coli reporter strain, as RecA is an early, reliable, and quantifiable marker for activation of the SOS stress response pathway. We also measured the production and release of Shiga toxin 2 (Stx2) from a classic E. coli O157:H7 strain, derived from a food-borne outbreak due to spinach. Some, but not all, serotonin selective reuptake inhibitors (SSRIs) and antipsychotic drugs induced an SOS response. The use of SSRIs is widespread and increasing; thus, the use of these antidepressants could account for some cases of hemolytic-uremic syndrome due to STEC and is not attributable to antibiotic administration. SSRIs could have detrimental effects on the normal intestinal microbiome in humans. In addition, as SSRIs are resistant to environmental breakdown, they could have effects on microbial communities, including aquatic ecosystems, long after they have left the human body.


Assuntos
Antipsicóticos/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Toxina Shiga II/metabolismo , Escherichia coli Shiga Toxigênica/efeitos dos fármacos , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , beta-Galactosidase/genética
6.
Biomolecules ; 11(6)2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072355

RESUMO

A broad spectrum of volatile organic compounds' (VOCs') biological activities has attracted significant scientific interest, but their mechanisms of action remain little understood. The mechanism of action of two VOCs-the cyclic monoterpenes (-)-limonene and (+)-α-pinene-on bacteria was studied in this work. We used genetically engineered Escherichia coli bioluminescent strains harboring stress-responsive promoters (responsive to oxidative stress, DNA damage, SOS response, protein damage, heatshock, membrane damage) fused to the luxCDABE genes of Photorhabdus luminescens. We showed that (-)-limonene induces the PkatG and PsoxS promoters due to the formation of reactive oxygen species and, as a result, causes damage to DNA (SOSresponse), proteins (heat shock), and membrane (increases its permeability). The experimental data indicate that the action of (-)-limonene at high concentrations and prolonged incubation time makes degrading processes in cells irreversible. The effect of (+)-α-pinene is much weaker: it induces only heat shock in the bacteria. Moreover, we showed for the first time that (-)-limonene completely inhibits the DnaKJE-ClpB bichaperone-dependent refolding of heat-inactivated bacterial luciferase in both E. coli wild type and mutant ΔibpB strains. (+)-α-Pinene partially inhibits refolding only in ΔibpB mutant strain.


Assuntos
Proteínas de Bactérias , Monoterpenos Bicíclicos , Dano ao DNA , DNA Bacteriano , Escherichia coli K12 , Limoneno , Resposta SOS em Genética/efeitos dos fármacos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Monoterpenos Bicíclicos/química , Monoterpenos Bicíclicos/metabolismo , Monoterpenos Bicíclicos/farmacologia , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Limoneno/química , Limoneno/metabolismo , Limoneno/farmacologia , Photorhabdus/genética
7.
Cells ; 10(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921732

RESUMO

A bioinformatic search for LexA boxes, combined with transcriptomic detection of loci responsive to DNA damage, identified 48 members of the SOS regulon in the genome of Salmonella enterica serovar Typhimurium. Single cell analysis using fluorescent fusions revealed that heterogeneous expression is a common trait of SOS response genes, with formation of SOSOFF and SOSON subpopulations. Phenotypic cell variants formed in the absence of external DNA damage show gene expression patterns that are mainly determined by the position and the heterology index of the LexA box. SOS induction upon DNA damage produces SOSOFF and SOSON subpopulations that contain live and dead cells. The nature and concentration of the DNA damaging agent and the time of exposure are major factors that influence the population structure upon SOS induction. An analogy can thus be drawn between the SOS response and other bacterial stress responses that produce phenotypic cell variants.


Assuntos
Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Resposta SOS em Genética , Salmonella typhimurium/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Cromossomos Bacterianos/genética , Dano ao DNA/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Loci Gênicos , Ácido Nalidíxico/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Salmonella typhimurium/efeitos dos fármacos , Análise de Célula Única
8.
Nature ; 592(7855): 611-615, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828299

RESUMO

Horizontal gene transfer and mutation are the two major drivers of microbial evolution that enable bacteria to adapt to fluctuating environmental stressors1. Clustered, regularly interspaced, short palindromic repeats (CRISPR) systems use RNA-guided nucleases to direct sequence-specific destruction of the genomes of mobile genetic elements that mediate horizontal gene transfer, such as conjugative plasmids2 and bacteriophages3, thus limiting the extent to which bacteria can evolve by this mechanism. A subset of CRISPR systems also exhibit non-specific degradation of DNA4,5; however, whether and how this feature affects the host has not yet been examined. Here we show that the non-specific DNase activity of the staphylococcal type III-A CRISPR-Cas system increases mutations in the host and accelerates the generation of antibiotic resistance in Staphylococcus aureus and Staphylococcus epidermidis. These mutations require the induction of the SOS response to DNA damage and display a distinct pattern. Our results demonstrate that by differentially affecting both mechanisms that generate genetic diversity, type III-A CRISPR systems can modulate the evolution of the bacterial host.


Assuntos
Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/imunologia , Mutagênese , Mutação , Staphylococcus/genética , Antibacterianos/farmacologia , Bacteriófagos/classificação , Bacteriófagos/fisiologia , Proteínas Associadas a CRISPR/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Desoxirribonucleases/metabolismo , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Staphylococcus/efeitos dos fármacos , Staphylococcus/imunologia , Staphylococcus/virologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/genética , Staphylococcus aureus/virologia , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/virologia , Fatores de Tempo
9.
Future Med Chem ; 13(2): 143-155, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33410707

RESUMO

Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.


Assuntos
Antibacterianos/química , Inibidores Enzimáticos/química , Resposta SOS em Genética/efeitos dos fármacos , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Reparo do DNA/efeitos dos fármacos , Farmacorresistência Bacteriana , Inibidores Enzimáticos/farmacologia , Exodesoxirribonuclease V/antagonistas & inibidores , Exodesoxirribonuclease V/genética , Exodesoxirribonucleases/antagonistas & inibidores , Exodesoxirribonucleases/genética , Regulação da Expressão Gênica , Humanos , Terapia de Alvo Molecular , Recombinases Rec A/antagonistas & inibidores , Recombinases Rec A/genética , Serina Endopeptidases/genética , Transdução de Sinais , Relação Estrutura-Atividade
10.
Artigo em Inglês | MEDLINE | ID: mdl-32660820

RESUMO

DNA is exposed to the attack of several exogenous agents that modify its chemical structure, so cells must repair those changes in order to survive. Alkylating agents introduce methyl or ethyl groups in most of the cyclic or exocyclic nitrogen atoms of the ring and exocyclic oxygen available in DNA bases producing damage that can induce the SOS response in Escherichia coli and many other bacteria. Likewise, ultraviolet light produces mainly cyclobutane pyrimidine dimers that arrest the progression of the replication fork and triggers such response. The need of some enzymes (such as RecO, ExoI and RecJ) in processing injuries produced by gamma radiation prior the induction of the SOS response has been reported before. In the present work, several repair-defective strains of E. coli were treated with methyl methanesulfonate, ethyl methanesulfonate, mitomycin C or ultraviolet light. Both survival and SOS induction (by means of the Chromotest) were tested. Our results indicate that the participation of these genes depends on the type of injury caused by a genotoxin on DNA.


Assuntos
Reparo do DNA/efeitos dos fármacos , Reparo do DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Mutagênicos/farmacologia , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Alquilantes/farmacologia , Proteínas de Bactérias/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/genética , Metanossulfonato de Etila/farmacologia , Metanossulfonato de Metila/farmacologia , Mitomicina/farmacologia , Dímeros de Pirimidina/farmacologia , Raios Ultravioleta/efeitos adversos
11.
Microbiology (Reading) ; 166(8): 785-793, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579098

RESUMO

Salmonella enterica subspecies enterica serovar Typhimurium (S. Typhimurium) definitive phage type 104 (DT104), S. enterica subspecies enterica serovar Worthington (S. Worthington) and S. bongori produce ArtA and ArtB (ArtAB) toxin homologues, which catalyse ADP-ribosylation of pertussis toxin-sensitive G protein. ArtAB gene (artAB) is encoded on prophage in DT104 and its expression is induced by mitomycin C (MTC) and hydrogen peroxide (H2O2) that trigger the bacterial SOS response. Although the genetic regulatory mechanism associated with artAB expression is not characterized, it is thought to be associated with prophage induction, which occurs when the RecA-mediated SOS response is triggered. Here we show that subinhibitory concentration of quinolone antibiotics that are SOS-inducing agents, also induce ArtAB production in these Salmonella strains. Both MTC and fluoroquinolone antibiotics such as enrofloxacin-induced artA and recA transcription and artAB-encoding prophage (ArtAB-prophage) in DT104 and S. Worthington. However, in S. bongori, which harbours artAB genes on incomplete prophage, artA transcription was induced by MTC and enrofloxacin, but prophage induction was not observed. Taken together, these results suggest that SOS response followed by induction of artAB transcription is essential for ArtAB production. H2O2-mediated induction of ArtAB prophage and efficient production of ArtAB was observed in DT104 but not in S. Worthington and S. bongori. Therefore, induction of artAB expression with H2O2 is strain-specific, and the mode of action of H2O2 as an SOS-inducing agent might be different from those of MTC and quinolone antibiotics.


Assuntos
ADP Ribose Transferases/genética , Antibacterianos/farmacologia , Toxinas Bacterianas/genética , Resposta SOS em Genética/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos , Salmonella/efeitos dos fármacos , ADP Ribose Transferases/metabolismo , Toxinas Bacterianas/metabolismo , Peróxido de Hidrogênio/farmacologia , Mitomicina/farmacologia , Prófagos/efeitos dos fármacos , Prófagos/genética , Quinolonas/farmacologia , Recombinases Rec A/genética , Resposta SOS em Genética/genética , Salmonella/genética , Fagos de Salmonella/efeitos dos fármacos , Fagos de Salmonella/genética , Salmonella enterica/genética , Especificidade da Espécie , Transcrição Gênica/efeitos dos fármacos
12.
J Bacteriol ; 202(2)2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31548275

RESUMO

All organisms regulate cell cycle progression by coordinating cell division with DNA replication status. In eukaryotes, DNA damage or problems with replication fork progression induce the DNA damage response (DDR), causing cyclin-dependent kinases to remain active, preventing further cell cycle progression until replication and repair are complete. In bacteria, cell division is coordinated with chromosome segregation, preventing cell division ring formation over the nucleoid in a process termed nucleoid occlusion. In addition to nucleoid occlusion, bacteria induce the SOS response after replication forks encounter DNA damage or impediments that slow or block their progression. During SOS induction, Escherichia coli expresses a cytoplasmic protein, SulA, that inhibits cell division by directly binding FtsZ. After the SOS response is turned off, SulA is degraded by Lon protease, allowing for cell division to resume. Recently, it has become clear that SulA is restricted to bacteria closely related to E. coli and that most bacteria enforce the DNA damage checkpoint by expressing a small integral membrane protein. Resumption of cell division is then mediated by membrane-bound proteases that cleave the cell division inhibitor. Further, many bacterial cells have mechanisms to inhibit cell division that are regulated independently from the canonical LexA-mediated SOS response. In this review, we discuss several pathways used by bacteria to prevent cell division from occurring when genome instability is detected or before the chromosome has been fully replicated and segregated.


Assuntos
Divisão Celular/efeitos dos fármacos , Divisão Celular/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bleomicina/farmacologia , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Divisão Celular/genética , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Replicação do DNA/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/efeitos da radiação , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Protease La/genética , Protease La/metabolismo , Radiação Ionizante , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/genética , Resposta SOS em Genética/efeitos da radiação
13.
Int J Med Microbiol ; 310(1): 151361, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31640923

RESUMO

Urinary tract infections are one of the most common bacterial infections and a major public health problem. The predominant causative agents are uropathogenic Escherichia coli. These strains differ from commensal E. coli by the presence of additional horizontally acquired chromosomal material, so-called pathogenicity islands, which encode traits that promote efficient bacterial colonization of the urinary tract. Uropathogenic model strain E. coli 536 possesses six archetypal pathogenicity islands. Bacteriophage-like integrases encoded by each pathogenicity island contribute to island instability. To learn more about the stability of these six islands and factors controlling their stability we constructed two chromosomal reporter systems for the measurement of island loss, as well as for the measurement of the promoter activity of the six island-associated integrase genes at the population level. We used these reporter gene modules to analyze the role of SOS response in island instability. Tests with subinhibitory concentrations of different antibiotics, including many drugs commonly used for the treatment of urinary tract infection, indicated that only SOS response-inducing antibiotics led to an increased loss of islands which was always associated with an increase in the bacterial subpopulations showing high integrase promoter activity. This suggests that island excision correlates with the expression of the cognate integrase. Our reporter modules are valuable tools to investigate the impact of various growth conditions on genome plasticity. Furthermore, a better understanding of the conditions, which affect bacterial integrase expression may open ways to specifically manipulate the genome content of bacterial pathogens by increasing pathogenicity island deletion rates in infecting or colonizing bacteria, thus leading to the attenuation of bacterial pathogens.


Assuntos
Antibacterianos/farmacologia , Genoma Bacteriano , Ilhas Genômicas/genética , Integrases/genética , Resposta SOS em Genética/efeitos dos fármacos , Escherichia coli Uropatogênica/efeitos dos fármacos , Escherichia coli Uropatogênica/genética , Humanos , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/enzimologia
14.
Life Sci ; 241: 117116, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31790690

RESUMO

AIMS: LexA protein is a transcriptional repressor which regulates the expression of more than 60 genes belonging to the SOS global regulatory network activated by damages to bacterial DNA. Considering its role in bacteria, LexA represents a key target to counteract bacterial resistance: the possibility to modulate SOS response through the inhibition of LexA autoproteolysis may lead to reduced drug susceptibility and acquisition of resistance in bacteria. In our study we investigated boron-containing compounds as potential inhibitors of LexA self-cleavage. MAIN METHODS: The inhibition of LexA self-cleavage was evaluated by following the variation of the first-order rate constant by LC-MS at several concentrations of inhibitors. In silico analysis was applied to predict the binding orientations assumed by the inhibitors in the protein active site, upon covalent binding to the catalytic Ser-119. Bacterial filamentation assay was used to confirm the ability of (3-aminophenyl)boronic acid to interfere with SOS induced activation. KEY FINDINGS: Boron-containing compounds act as inhibitors of LexA self-cleavage, as also confirmed by molecular modelling where the compounds interact with the catalytic Ser-119, via the formation of an acyl-enzyme intermediate. A new equation for the description of the inhibition potency in an autoproteolytic enzyme is also disclosed. Bacterial filamentation assays strongly support the interference of our compounds with the SOS response activation through inhibition of septum formation. SIGNIFICANCE: The obtained results demonstrated that phenylboronic compounds could be exploited in a hit-to-lead optimization process toward effective LexA self-cleavage inhibitors. They would sustain the rehabilitation in therapy of several dismissed antibiotics.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Compostos de Boro/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Serina Endopeptidases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Compostos de Boro/química , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Resposta SOS em Genética/efeitos dos fármacos , Serina Endopeptidases/química , Serina Endopeptidases/genética
15.
Ecotoxicol Environ Saf ; 188: 109892, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31732272

RESUMO

Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.


Assuntos
Aliivibrio fischeri/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Ibuprofeno/toxicidade , Fotólise , Poluentes Químicos da Água/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Ecossistema , Ecotoxicologia , Microbioma Gastrointestinal/genética , Células HEK293 , Células Hep G2 , Humanos , Ibuprofeno/química , Resposta SOS em Genética/efeitos dos fármacos , Poluentes Químicos da Água/química
16.
Sci Rep ; 9(1): 18777, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827185

RESUMO

Shiga toxins (Stx) induce the symptoms of the life-threatening hemolytic uremic syndrome (HUS) and are the main virulence factors of enterohemorrhagic Escherichia coli (EHEC). The bacterial SOS response is the essential signal for high level production and release of Stx1/2. To assess the potential effectiveness of different antibiotics in blocking SOS response and Stx1/2 production, we constructed a reporter gene based test system that allows for the time-resolved, simultaneous read-out of the SOS response (recAP-cfp) and Stx1 production (stx1::yfp) in EHEC O157:H7 EDL933. We find that cells exposed to inhibitory or subinhibitory concentrations of ciprofloxacin did induce the SOS response, but not when the cells were exposed to rifaximine, azithromycin, tetracycline, gentamicin or ampicillin. Cell lysis and the peak in Stx1 production were substantially delayed with respect to the peak of the SOS response. We used this feature to show that adding transcriptional or translational inhibitors can block Stx1 production even after the SOS response is fully induced. RT-qPCR based tests with other clinically relevant EHEC isolates showed similar results for both Stx1 and Stx2. These observations suggest that transcriptional and translational inhibitors may be of value in treating EHEC infections.


Assuntos
Antibacterianos/farmacologia , Escherichia coli Êntero-Hemorrágica/genética , Resposta SOS em Genética/efeitos dos fármacos , Toxina Shiga I/genética , Ampicilina/farmacologia , Parede Celular/efeitos dos fármacos , Ciprofloxacina/farmacologia , Escherichia coli Êntero-Hemorrágica/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Genes Reporter , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Toxina Shiga I/biossíntese , Transcrição Gênica/efeitos dos fármacos
17.
PLoS Pathog ; 15(11): e1008123, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31725806

RESUMO

Adherent Invasive Escherichia coli (AIEC) strains recovered from Crohn's disease lesions survive and multiply within macrophages. A reference strain for this pathovar, AIEC LF82, forms microcolonies within phagolysosomes, an environment that prevents commensal E. coli multiplication. Little is known about the LF82 intracellular growth status, and signals leading to macrophage intra-vacuolar multiplication. We used single-cell analysis, genetic dissection and mathematical models to monitor the growth status and cell cycle regulation of intracellular LF82. We found that within macrophages, bacteria may replicate or undergo non-growing phenotypic switches. This switch results from stringent response firing immediately after uptake by macrophages or at later stages, following genotoxic damage and SOS induction during intracellular replication. Importantly, non-growers resist treatment with various antibiotics. Thus, intracellular challenges induce AIEC LF82 phenotypic heterogeneity and non-growing bacteria that could provide a reservoir for antibiotic-tolerant bacteria responsible for relapsing infections.


Assuntos
Antibacterianos/farmacologia , Doença de Crohn/microbiologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/microbiologia , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/patogenicidade , Macrófagos/microbiologia , Aderência Bacteriana , Comunicação Celular , Células Cultivadas , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/genética , Humanos , Macrófagos/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos
18.
Int. microbiol ; 22(3): 369-376, sept. 2019. ilus, graf
Artigo em Inglês | IBECS | ID: ibc-184844

RESUMO

Escherichia coli cells have been observed earlier to display caspase-3-like protease activity (CLP) and undergo programmed cell death (PCD) when exposed to gamma rays. The presence of an irreversible caspase-3 inhibitor (Ac-DEVD-CMK) during irradiation was observed to increase cell survival. Since radiation is known to induce SOS response, the effect of a caspase-3 inhibitor on SOS response was studied in E. coli. UV, a well-known SOS inducer, was used in the current study. Cell filamentation in E. coli upon UV exposure was found to be inhibited by ninefold in the presence of a caspase-3 inhibitor. CLP activity was found to increase twofold in UV-exposed cells than in control (non-treated) cells. Further, bright fluorescing filaments were observed in UV-exposed E. coli cells treated with FITC-DEVD-FMK, a fluorescent dye tagged with an irreversible caspase-3 inhibitor (DEVD-FMK), indicating the presence of active CLP in these cells. Unlike caspase-3 inhibitor, a serine protease inhibitor, phenylmethanesulfonyl fluoride (PMSF), was not found to improve cell survival after UV treatment. Additionally, a SOS reporter system known as SIVET (selectable in vivo expression technology) assay was performed to reconfirm the inhibition of SOS induction in the presence of caspase-3 inhibitor. SIVET assay is used to quantify cells in which the SOS response has been induced leading to a scorable permanent selectable change in the cell. The SIVET induction frequency (calculated as the ratio of SIVET-induced cells to total viable cells) increased around tenfold in UV-exposed cultures. The induction frequency was found to decrease significantly to 51 from 80% in the cells pre-incubated with caspase-3 inhibitor. On the contrary, caspase-3 inhibitor failed to improve cell survival of E. coli ΔrecA and E. coli DM49 (SOS non-inducible) cells post UV treatment. Summing together, the results indicated a possible linkage of SOS response and the PCD process in E. coli. The findings also indicated that functional SOS pathway is required for CLP-like activity; however, the exact mechanism remains to be elucidated


No disponible


Assuntos
Inibidores de Caspase/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Raios Ultravioleta , Caspase 3/metabolismo , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento , Resposta SOS em Genética/efeitos dos fármacos , Resposta SOS em Genética/efeitos da radiação , Inibidores de Serino Proteinase/metabolismo
19.
Biochem Biophys Res Commun ; 517(4): 655-661, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31416617

RESUMO

Bacterial RecA plays an important role in the evaluation of antibiotic resistance via stress-induced DNA repair mechanism; SOS response. Accordingly, RecA became an important therapeutic target against antimicrobial resistance. Small molecule inhibitors of RecA may prevent adaptation of antibiotic resistance mutations and the emergence of antimicrobial resistance. In our study, we observed that phenolic compound p-Coumaric acid as potent RecA inhibitor. It inhibited RecA driven biochemical activities in vitro such as ssDNA binding, strand exchange, ATP hydrolysis and RecA coprotease activity of E. coli and L. monocytogenes RecA proteins. The mechanism underlying such inhibitory action of p-Coumaric acid involves its ability to interfere with the DNA binding domain of RecA protein. p-Coumaric acid also potentiates the activity of ciprofloxacin by inhibiting drastic cell survival of L. monocytogenes as well as filamentation process; the bacteria defensive mechanism in response to DNA damage. Additionally, it also blocked the ciprofloxacin induced RecA expression leading to suppression of SOS response in L. monocytogenes. These findings revealed that p-Coumaric acid is a potent RecA inhibitor, and can be used as an adjuvant to the existing antibiotics which not only enhance the shelf-life but also slow down the emergence of antibiotic resistance in bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Listeria monocytogenes/efeitos dos fármacos , Propionatos/farmacologia , Recombinases Rec A/antagonistas & inibidores , Resposta SOS em Genética/efeitos dos fármacos , Trifosfato de Adenosina/metabolismo , Ciprofloxacina/farmacologia , Ácidos Cumáricos , Reparo do DNA/efeitos dos fármacos , DNA Bacteriano/antagonistas & inibidores , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Expressão Gênica , Hidrólise/efeitos dos fármacos , Listeria monocytogenes/genética , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/metabolismo , Testes de Sensibilidade Microbiana , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética/efeitos dos fármacos
20.
J Antimicrob Chemother ; 74(8): 2188-2196, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31102529

RESUMO

BACKGROUND: Fluoroquinolones such as ciprofloxacin induce the mutagenic SOS response and increase the levels of intracellular reactive oxygen species (ROS). Both the SOS response and ROS increase bacterial mutagenesis, fuelling the emergence of resistant mutants during antibiotic treatment. Recently, there has been growing interest in developing new drugs able to diminish the mutagenic effect of antibiotics by modulating ROS production and the SOS response. OBJECTIVES: To test whether physiological concentrations of N-acetylcysteine, a clinically safe antioxidant drug currently used in human therapy, is able to reduce ROS production, SOS induction and mutagenesis in ciprofloxacin-treated bacteria without affecting antibiotic activity. METHODS: The Escherichia coli strain IBDS1 and its isogenic mutant deprived of SOS mutagenesis (TLS-) were treated with different concentrations of ciprofloxacin, N-acetylcysteine or both drugs in combination. Relevant parameters such as MICs, growth rates, ROS production, SOS induction, filamentation and antibiotic-induced mutation rates were evaluated. RESULTS: Treatment with N-acetylcysteine reduced intracellular ROS levels (by ∼40%), as well as SOS induction (by up to 75%) and bacterial filamentation caused by subinhibitory concentrations of ciprofloxacin, without affecting ciprofloxacin antibacterial activity. Remarkably, N-acetylcysteine completely abolished SOS-mediated mutagenesis. CONCLUSIONS: Collectively, our data strongly support the notion that ROS are a key factor in antibiotic-induced SOS mutagenesis and open the possibility of using N-acetylcysteine in combination with antibiotic therapy to hinder the development of antibiotic resistance.


Assuntos
Acetilcisteína/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Mutagênese/efeitos dos fármacos , Resposta SOS em Genética/efeitos dos fármacos , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana/genética , Escherichia coli/fisiologia , Proteínas de Escherichia coli/genética , Testes de Sensibilidade Microbiana , Taxa de Mutação , Espécies Reativas de Oxigênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...